
Is Cross-validation the Gold Standard to Estimate Out-of-sample

Model Performance?

Motivation

Model Assumptions

• [Smoothness] ∀ 𝑥, 𝐸𝑃𝑌|𝑥[ℓ(𝑧; 𝑌)] is twice differentiable and bounded. Optimality condition holds.

• [Model Convergence Rate] 𝐸𝐷𝑛 Ƹ𝑧 𝑥 − 𝑧∗ 𝑥
2
= Θ 𝑛−𝛾 , 𝛾 ∈ (0,½].

𝛾 = min 𝛾𝑏 , 𝛾𝑣 ∈ 0,½ denotes bias and variability convergence.

𝛾 =
1

2
: parametric model 𝛾 <

1

2
: kNN, NW kernel, random forest [4][5]

• [LOO Stability] 𝐸𝑃,𝐷𝑛[ Ƹ𝑧 𝑋 − Ƹ𝑧 −𝑖 𝑋
2
] = 𝑜(𝑛−1).

• Cross-validation is the default choice of estimating model performance.

• Despite wide utility, their statistical benefits remain unknown.

Main Results

Key takeaway: In terms of estimating out-of-sample model performance, for

various parametric and nonparametric estimators, cross-validation does not

statistically outperform plug-in, both asymptotic bias and coverage accuracy of

the associate interval.

Problem Setup

Goal

Valid point estimator ෡𝑨

interval 𝑰 𝜶

Examples & Experiments

Numerical simulation
Regression problem: ℓ 𝑧; 𝑌 = 𝑧 − 𝑌 2

CVaR portfolio optimization: ℓ 𝑧; 𝑌 = 𝑧𝑣 +
1

𝜂
−𝑧𝑝

⊤ 𝑌 − 𝑧𝑣
+

Extensions
When 𝛾 > 1/4, all intervals provide valid coverages for:

𝐸𝑃[𝑐 𝑧∗ 𝑋 ; 𝑌) ( limiting decisions).

𝐸𝑄[𝑐 Ƹ𝑧 𝑋 ; 𝑌) with Q under covariate shift.

Other plug-in, cross validation variants:

Bias corrected CV / plug-in; Nested CV.

More efficient than LOOCV while retaining statistical guarantees .
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K-Fold CV Plug-in LOOCV

Bias size Θ(𝑛−2𝛾), < 0 Θ(𝑛−2𝛾𝑣), > 0 o(𝑛−1), < 0

Condition of the

validity of interval

coverage

𝛾 >
1

4
𝛾𝑣 >

1

4

Any 𝛾𝑏 , 𝛾𝑣

Computationally worse:

Additional n opt problems.

Never outperform plug-in:

𝛾 ≤ 𝛾𝑣

What has been understood

Data 𝐷𝑛 Predictor

Evaluation of 𝒄 ො𝒛

{(𝑋𝑖 , 𝑌𝑖)}𝑖∈[𝑛] ∼ 𝑷 Ƹ𝑧 𝑥 = 𝐴(𝐷𝑛; 𝑥)

= 𝐸𝑷(𝑋,𝑌) ℓ Ƹ𝑧 𝑋 ; 𝑌

Model A:

Parametric + Nonparametric

Out-of-sample

Model Performance

n Plug-in 5-CV LOOCV

kNN 2400 0.00 0.00 0.92

𝑘 = 𝑛1/4 4800 0.00 0.00 0.88

9600 0.00 0.00 0.89

2400 0.77 0.66 0.72

RF 4800 0.86 0.47 0.85

9600 0.85 0.42 0.90

1200 0.78 0.55 0.78

Ridge 2400 0.85 0.84 0.86

4800 0.88 0.89 0.89

Proof Sketch

Step 1: Variability term fixed as 𝑂𝑝 𝑛−
1

2 . (stability)

Step 2.1: Plug-in (Optimistic) Bias (controlled by 𝛾𝑣)

• M-estimator asymptotics → local samples → bias decomposition via a novel Taylor expansion.

Step 2.2: CV Bias (controlled by 𝛾)

• Fewer samples in each evaluation that affects the convergence.

Bias Coverage Validity

Plug-in K-CV LOOCV Plug-in K-CV LOOCV

LERM 𝐨(𝒏−𝟏/𝟐) 𝐨(𝒏−𝟏/𝟐)
𝒐(𝒏−𝟏/𝟐)

√ √ √

kNN (large k) 𝐨(𝒏−𝟏/𝟐) Ω(𝑛−1/2) √ × √

kNN (small k) Ω(𝑛−1/2) Ω(𝑛−1/2) × × √

RF 𝐨(𝒏−𝟏/𝟐) Ω(𝑛−1/2) √ × √

Nonparametric examples Ƹ𝑧 𝑥 ∈ argmi𝑛𝑧∈𝑍σ𝑖∈[𝑛]𝒘𝒏,𝒊 𝒙 ℓ(𝑧; 𝑌𝑖)

kNN: 𝑤𝑛,𝑖 𝑥 = 1{𝑋𝑖 𝑖𝑠 𝑎 𝑘𝑁𝑁 𝑜𝑓 𝑥};

Random Forest (RF): 𝑤𝑛,𝑖 𝑥 = σ𝑗=1
𝑇 1{𝜏𝑗(𝑥𝑖)=𝜏𝑗 𝑥 }/𝑇, 𝐹 = 𝜏1, … , 𝜏𝑇

Point Estimators and Interval Procedures

𝑰𝒎 𝜶 = [ መ𝐴𝑚 − 𝑧
1−

𝛼

2
ො𝜎𝑚/ 𝑛, መ𝐴𝑚 + 𝑧

1−
𝛼

2
ො𝜎𝑚/ 𝑛], 𝑚 ∈ {𝑝, 𝑐𝑣}.

Plug-in: መ𝐴𝑝 =
1

𝑛
σ𝑖∈[𝑛] ℓ Ƹ𝑧 𝑋𝑖 ; 𝑌𝑖 , 𝜎𝑝

2 =
1

𝑛
σ𝑖∈[𝑛] ℓ Ƹ𝑧 𝑋𝑖 ; 𝑌𝑖 − መ𝐴𝑝

2
,

Cross-validation: መ𝐴𝑐𝑣 =
1

𝑛
σ𝑘∈[𝐾]σ𝑖∈𝑁𝑘

ℓ Ƹ𝑧 −𝑁𝑘 𝑋𝑖 ; 𝑌𝑖 , 𝜎𝑝
2 =

1

𝑛
σ𝑘∈[𝐾]σ𝑖∈𝑁𝑘

(ℓ Ƹ𝑧 −𝑁𝑘 𝑋𝑖 ; 𝑌𝑖 − መ𝐴𝑐𝑣)
2

Evaluation bias and coverage probability of interval estimates for MSE of a fitted random forest regressor

Small bias size: 𝐸 𝑐 Ƹ𝑧 − መ𝐴

Validity coverage: lim
𝑛→∞

𝑃 𝑐 Ƹ𝑧 ∈ 𝑰 𝜶 = 1 − 𝛼

Research Question:

• Are LOOCV and K-fold CV a “must use” in estimating out-

of-sample model performance in general?

• If not, when are these evaluation procedures worthwhile?

Cross-validation (CV)

• Limiting theorems centered at the

average-across-fold Ƹ𝑧(−𝑘) [1].

• Standard procedure suffers under

high-dimensional (linear) models [2].

Plug-in (In-sample Loss)

• Valid asymptotic normality when

model is stable [3].

• Overfit under complex models.

No results for their performance difference, especially under

nonparametric models with a slow convergence rate.

Concept plots of interval coverage of 𝑐( Ƹ𝑧) and 𝑐 𝑧∗ : = 𝐸𝑃[𝑐 𝑧∗ 𝑋 ; 𝑌) for evaluation procedures across model rates

Coverage probability of different methods (target 90% interval), where boldfaced values mean “almost”

valid coverage for 𝑐( Ƹ𝑧) (i.e., within [0.85, 0.95]).

Main

Theorem
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