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Optimizer’s Information Criterion: Dissecting and Removing Bias in Data-Driven Optimization

Garud lyengar, Henry Lam, Tianyu Wang

Data-Driven Optimization

min {EP*[h(az; §)]} (Basic Framework)
Te

e Unknown: distribution & ~ P*;

o We only observe samples D,, .= {& L, ~ (P*)";

e Generalization: Contextual Optimization, Risk-aversed Optimization.

General optimization procedures:

o Output 2%() € {2*(0) € X|0 € O}, where 0 is optimized from D,,.
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o Variants: Model class + Opt design (prediction-based, robust, ...)

Which optimization procedure should we choose?

Criterion to evaluate and compare decisions:

A =Ep (Ep[h(I*(é), f)]) (Example: Expected Cost)
Goal: Find an estimator A(z*(0)) for every z*(0).

* Accurate Evaluation: Epn[fl] ~ A;
e Accurate Comparison: A smaller A implies smaller A.

Evaluation Bias and Existing Solutions

Empirical Evaluation: A, := Ly h(z*(0): &) with the smallest A,

o Evaluation bias: A —E[A,| > 0.
o Selection bias: Always select SAA 0 € arg ming{>-" , h(2*(0): &) };
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Solution |: Resample-based estimators:

o K-Fold / Leave-one-out (LOQO) Cross-validation, bootstrap;

e Refitting many optimization procedures decisions.
Solution Il: Problem-specific estimators:

o Approximate Leave-one-out (ALO), Akaike Information Criterion (AlC);

® Provide bias formulas / computationally efficient ways for specific cost functions.

Our Work: A general and efficient approach that evaluates data-driven
decisions by removing the bias.

Contact: tw2837@columbia.edu | Columbia University

Optimizer’s Information Criterion (OIC)

OIC corrects the bias through direct estimation:

A= L5 ha*(0);&) — 5 Tl Veh(a"(0):6) - TF(&)
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o OIC yields nearly unbiased performance evaluation: E[A] = A + o(1/n).
e OIC is close to LOOCV: n(flom - ALOOCV) 0.

(LOOCV has superior evaluation and selection performance.)

Tools and Applications

Optimization Procedure: 7T'(-) :D,, > Decision Parameter,

A

0 =T (P,) and 6* = T(P*).
Influence Function:
T'(ed 1 —¢e)P") — T'(P*
e—0" €
[ F'(€) captures the impact of a point & on the optimization procedure /.

Estimated Influence Function: 71F(§) = T F(¢; T, 1P,) for some approx-
imated optimization procedure 7'(-).

Proof Sketch:

e Deriving the expected bias based on properties of the influence function:

Ep-[Voh(2"(6):) 'TF ()], (1> |
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o Approximate unknown Vgh(z*(0%);&) and [F'(£) with empirical counterparts:
Ep, [[[LF(E)]l2] = M F(E)][2 = o(1).

Generality: OIC can be computed for general (constrained) (non)smooth objectives.

Cost Function h(-;-)

Smooth Objectives
Piecewise Linear Objectives
) < Entropic Regularized Linear

A = EpEp- [210}

Calibration Procedure T ()

Estimate-then-Optimize I F
Integrate-Estimation-Optimization (g)
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End-to-End
(Distributionally) Robust E2E

Computation: ﬁ(f) only requires gradient and hessian of the cost function, which is
more efficient than refitting optimization procedures.
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(a) Statistical Performance (b) Statistics Computation Frontier

Leave-one-out (LOOCYV)

CV Frontier (increasing K)

Optimization Procedure Example [Estimate-then-Optimize]
T(P) € arg miny Es[p(6:€)], 2*(6) € arg min, ¢ Fp,[h(x: )]
[F(E) = —(Bp[Vopd(07; f)])_lvﬁb(ﬁ*; §)
[F(§) = —(Bg [Vagp(0;€)]) " Vo (0; €)
For example, ¢(6;&) = —log pg(&) in maximum likelihood estimation.

Benefit I: Statistically Improved Decision Selection

OIC identifies optimal hyperparameters and models through improved evaluation.
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(b) Model Selection: Newsvendor
Problem (Exponential versus Normal)

(@) Parameter Selection: Mean-Variance
Portfolio Optimization

e Performance evaluation integrated in https://python-dro.org.

Benefit Il: Reduction of Computational Costs

OIC does not need to solve additional optimization problems.

Task Method OIC 5-CV ALO
ERM 1.64 x 1073 3.84 x 1072 4.10 x 1072
Portfolio Param 550 x 107t 4.18 x 1071 3.23 x 10V

DRO 1.64 x 1073 6.59 x 10° 4.29 x 1072

Ridge 1.1 x1072 34x1072 84x 1072
Neural Network| 1.8 x 10% 8.3 x 10° 1.9 x 10*-

Note. running time for each evaluation procedure (unit: seconds).

Regression

Benefit Ill: Transparent Design Principle

Understanding the evaluation bias leads to a better design of decision-focused learning.
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(a) ETO Bias (A. = 0.82) (b) SAA Bias (A. = 3.79)

— Incorporate OIC in the evaluation, selection and training procedure


https://python-dro.org

